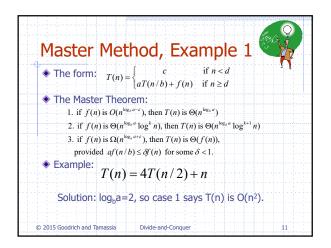


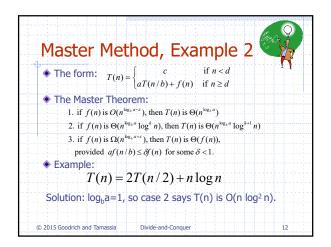
and look for
time
bn
bn
bn
bn + bn log

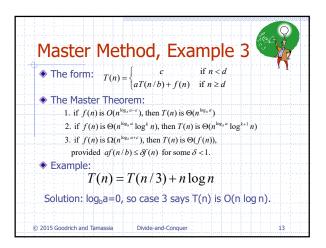
Guess-and-	Test Method	
	t method, we guess a closed for e it is true by induction:	m solution
	(I I I C O	
T(n) =	b if n < 2 $2T(n/2) + bn \log n \text{if } n \ge 2$	
Guess: T(n) < cn log) n.	
T(n) = 2	$2T(n/2) + bn \log n$	
= 2	$2(c(n/2)\log(n/2)) + bn\log n$	
= 0	$cn(\log n - \log 2) + bn \log n$	
= 0	$cn\log n - cn + bn\log n$	
Wrong: we cannot n	nake this last line be less than cr	ı log n
© 2015 Goodrich and Tamassia	Divide-and-Conquer	

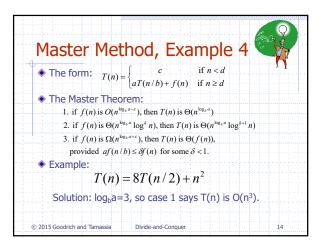
		¥+ * • ? ?
Guess-and-Te	st Method, (cont.)
Recall the recurrence	equation:	
$I(n) = \begin{cases} 2 \\ 1 \\ 2 \end{cases}$	$b \qquad \text{if } n < 2$ $T(n/2) + bn \log n \text{if } n \ge 2$	
Guess #2: T(n) < cn	log ² n.	
T(n) = 2T(n)	$(2) + bn \log n$	
=2(c(n	$(2)\log^2(n/2) + bn\log n$	
= <i>cn</i> (log	$gn - \log 2)^2 + bn \log n$	
$= cn \log$	$n^2 n - 2cn\log n + cn + bn\log n$	
$\leq cn \log$	² n	
if $c > b$.		
So, T(n) is O(n log ² n		
	s method, you need to have a good at induction proofs.	jooa guess
© 2015 Goodrich and Tamassia	Divide-and-Conquer	9

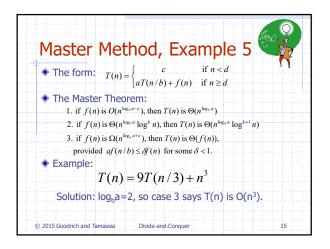
Master Me	ethod
the form:	d-conquer recurrence equations have
T(n)	$\begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$
$I(n) = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$	$\int aT(n/b) + f(n)$ if $n \ge d$
• The Master The	
1. if $f(n)$ is $O(n)$	$n^{\log_b a-\varepsilon}$), then $T(n)$ is $\Theta(n^{\log_b a})$
2. if $f(n)$ is $\Theta($	$n^{\log_b a} \log^k n$, then $T(n)$ is $\Theta(n^{\log_b a} \log^{k+1} n)$
3. if $f(n)$ is $\Omega($	$n^{\log_b a+\varepsilon}$), then $T(n)$ is $\Theta(f(n))$,
provided af ($n/b \le \delta f(n)$ for some $\delta < 1$.

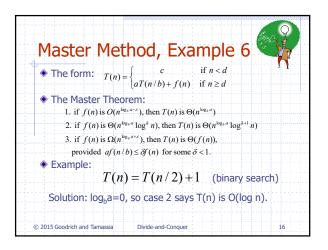


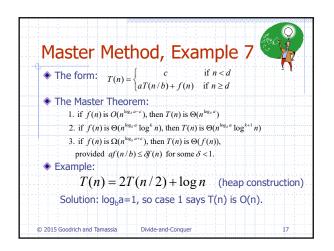


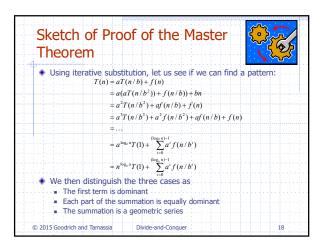




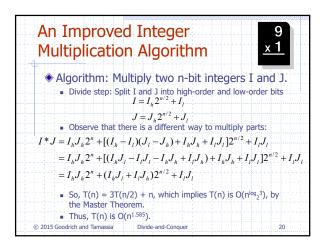


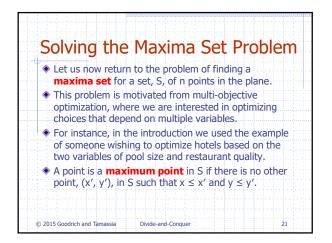


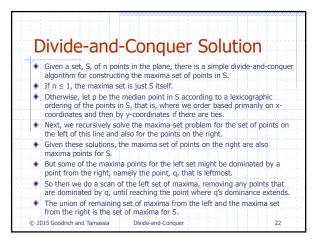


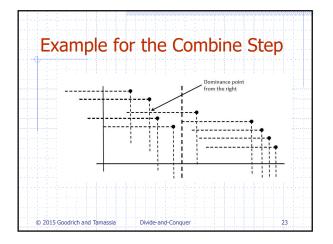


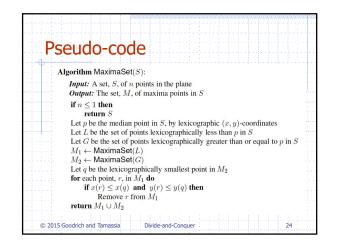
Integer Mu	Itiplication	9 <u>x 1</u>
Divide step: Sp	It in the set of the	
J	$=J_h 2^{n/2} + J_l$	
$I * J = (I_h)^2$	fine I*J by multiplying the parts and $I^{n/2} + I_i$ ($J_h 2^{n/2} + J_i$) $2^n + I_k J_i 2^{n/2} + I_i J_k 2^{n/2} + I_i J_i$	adding
■ So, T(n) = 4T(r	1/2 + $1/3/2$ + $1/3/2$ + $1/3/21/2$) + n, which implies T(n) is O(n ²). etter than the algorithm we learned in	n grade
2015 Goodrich and Tamassia	Divide-and-Conquer	19











	e divide-and-conquer maxima-set algorithm, mentation detail that we need to work out.
	issue of how to efficiently find the point, p, pint in a lexicographical ordering of the points ir (x, y)-coordinates.
There are two imme	diate possibilities:
as that given in Sect	a linear-time median-finding algorithm, such ion 9.2. This achieves a good asymptotic ds some implementation complexity.
(x, y)-coordinates as MaxmaSet algorithm	sort the points in S lexicographically by their a preprocessing step, prior to calling the on S. Given this preprocessing step, the ly the point in the middle of the list.

Analysis		
be performed in O ignoring floor and	(n) time, so ceiling functi e C-11.5), th r maxima-se	ions (as allowed by the e running time for the t algorithm can be
	Ь	if <i>n</i> < 2
$T(n) = \begin{cases} \\ 21 \end{cases}$	T(n/2) + bn	$n \text{if } n \ge 2$
Thus, according to runs in O(n log n)		Theorem, this algorithm