

Application: Maxima Sets

- We can visualize the various trade-offs for optimizing twodimensional data, such as points representing hotels according to their pool size and restaurant quality, by plotting each as a twodimensional point, (x, y), where x is the pool size and y is the restaurant quality score.
- We say that such a point is a maximum point in a set if there is no other point, $\left(x^{\prime}, y^{\prime}\right)$, in that set such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$.
- The maximum points are the best potential choices based on these two dimensions and finding all of them is the maxima set problem.

We can efficiently find all the maxima points by divide-and-conquer Here the set is $\{A, H, I, G, D\}$

Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
- Divide: partition S into two sequences S_{1} and S^{\prime} two sequences S_{1} and S
of about $n / 2$ elements of abo
- Conquer: recursively sort \boldsymbol{S}_{1} and \boldsymbol{S}_{2}
- Combine: merge S_{1} and S_{2} into a unique sorted sequence

Algorithm mergeSort(S) Input sequence S with n elements
Output sequence \boldsymbol{S} sorted according to C
if S.size ()>1
$\left(S_{1}, S_{2}\right) \leftarrow \operatorname{partition}(\boldsymbol{S}, \boldsymbol{n} / 2)$
mergeSort $\left(S_{1}\right)$
mergeSort $\left(S_{2}\right)$
$S \leftarrow \operatorname{merge}\left(S_{1}, S_{2}\right)$

Iterative Substitution

- In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: $\quad T(n)=2 T(n / 2)+b n$

$$
\begin{aligned}
& \left.=2\left(2 T\left(n / 2^{2}\right)\right)+b(n / 2)\right)+b n \\
& =2^{2} T\left(n / 2^{2}\right)+2 b n \\
& =2^{3} T\left(n / 2^{3}\right)+3 b n \\
& =2^{4} T\left(n / 2^{4}\right)+4 b n \\
& =\ldots \\
& =2^{i} T\left(n / 2^{i}\right)+i b n
\end{aligned}
$$

- Note that base, $T(n)=b$, case occurs when $2=n$. That is, $i=\log n$
- So, $\quad T(n)=b n+b n \log n$
- Thus, $T(n)$ is $O(n \log n)$.
© 2015 Goodrich and Tamassia Divide-and-Conquer
Draw the recursion tree for the recurrence relation and look for a pattern:
$T(n)=\left\{\begin{array}{cc}b & \text { if } n<2 \\ 2 T(n / 2)+b n & \text { if } n \geq 2\end{array}\right.$
depth T's size
$0 \quad 1 \quad n$
$1 \quad 2 \quad n / 2$
$\boldsymbol{i} \quad 2^{i} \quad n / 2$
\qquad
Divide-and-Conquer

Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

Guess-and-Test Method, (cont.)

- Recall the recurrence equation:

$$
T(n)=\left\{\begin{array}{cl}b & \text { if } n<2 \\ 2 T(n / 2)+b n \log n & \text { if } n \geq 2\end{array}\right.
$$

- Guess \#2: $\mathrm{T}(\mathrm{n})<\mathrm{cn} \log ^{2} \mathrm{n}$.
$T(n)=2 T(n / 2)+b n \log n$
$=2\left(c(n / 2) \log ^{2}(n / 2)\right)+b n \log n$
$=c n(\log n-\log 2)^{2}+b n \log n$
$=c n \log ^{2} n-2 c n \log n+c n+b n \log n$ $\leq c n \log ^{2} n$
- if $c>b$.

So, $T(n)$ is $O\left(n \log ^{2} n\right)$.

- In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

Master Method

- Many divide-and-conquer recurrence equations have the form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
\qquad

Master Method, Example 2

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{a} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{g} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{6} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

- Example:

$$
T(n)=2 T(n / 2)+n \log n
$$

Solution: $\log _{b} a=1$, so case 2 says $T(n)$ is $O\left(n \log ^{2} n\right)$.

Master Method, Example 5

- The form: $T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{s} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{5} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{5} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{g} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n)$), provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

- Example:

$$
T(n)=9 T(n / 3)+n^{3}
$$

Solution: $\log _{b} a=2$, so case 3 says $T(n)$ is $O\left(n^{3}\right)$.

Master Method, Example 7

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{a} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{5} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{g} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{5} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{g} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n)$), provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

- Example:

$$
T(n)=2 T(n / 2)+\log n \quad \text { (heap construction) }
$$

Solution: $\log _{\mathrm{b}} a=1$, so case 1 says $T(n)$ is $O(n)$.
© 2015 Goodrich and Tamassia Divide-and-Conquer 14
Master Method, Example 4

- The form: $\quad T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{\beta} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{g} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{g} a} \log ^{k+1} n\right)$ 3. if $f(n)$ is $\Omega\left(n^{\log _{\alpha} \alpha+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

- Example:

$$
T(n)=8 T(n / 2)+n^{2}
$$

Solution: $\log _{b} a=3$, so case 1 says $T(n)$ is $O\left(n^{3}\right)$.

Master Method, Example 6

- The form: $T(n)=\left\{\begin{array}{cc}c & \text { if } n<d \\ a T(n / b)+f(n) & \text { if } n \geq d\end{array}\right.$
- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{h} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{s} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{s} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{g} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\epsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

- Example:

$$
T(n)=T(n / 2)+1 \quad \text { (binary search) }
$$

Solution: $\log _{b} a=0$, so case 2 says $T(n)$ is $O(\log n)$.
c 2015 Goodrich and Tamassia Divide-and-Conquer
16

Sketch of Proof of the Master Theorem

- Using iterative substitution, let us see if we can find a pattern: $T(n)=a T(n / b)+f(n)$
$\left.=a\left(a T\left(n / b^{2}\right)\right)+f(n / b)\right)+b n$
$=a^{2} T\left(n / b^{2}\right)+a f(n / b)+f(n)$
$=a^{3} T\left(n / b^{3}\right)+a^{2} f\left(n / b^{2}\right)+a f(n / b)+f(n)$
$=\ldots$
$=a^{\log _{\Delta} n} T(1)+\sum_{i=0}^{\left(\log _{b} n\right)-1} a^{i} f\left(n / b^{i}\right)$
$=n^{\log _{b} a} T(1)+\sum_{i=0}^{\left(\log _{n} h\right)-1} a^{i} f\left(n / b^{i}\right)$
- We then distinguish the three cases as
- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series
© 2015 Goodrich and Tamassia Divide-and-Conquer

Integer Multiplication

- Algorithm: Multiply two n-bit integers I and J.
- Divide step: Split I and J into high-order and low-order bits

$$
\begin{aligned}
& I=I_{h} 2^{n / 2}+I_{l} \\
& J=J_{h} 2^{n / 2}+J_{l}
\end{aligned}
$$

- We can then define I*J by multiplying the parts and adding:

$$
\begin{aligned}
I^{*} J & =\left(I_{h} 2^{n / 2}+I_{l}\right) *\left(J_{h} 2^{n / 2}+J_{l}\right) \\
& =I_{h} J_{h} 2^{n}+I_{h} J_{l} 2^{n / 2}+I_{l} J_{h} 2^{n / 2}+I_{l} J_{l}
\end{aligned}
$$

- So, $T(n)=4 T(n / 2)+n$, which implies $T(n)$ is $O\left(n^{2}\right)$.
- But that is no better than the algorithm we learned in grade school.

An Improved Integer Multiplication Algorithm

- Algorithm: Multiply two n-bit integers I and J.
- Divide step: Split I and J into high-order and low-order bits

$$
\begin{aligned}
& I=I_{h} 2^{n / 2}+I_{l} \\
& J=J_{h} 2^{n / 2}+J_{l}
\end{aligned}
$$

- Observe that there is a different way to multiply parts:
$I^{*} J=I_{h} J_{h} 2^{n}+\left[\left(I_{h}-I_{l}\right)\left(J_{l}-J_{h}\right)+I_{h} J_{h}+I_{l} J_{l}\right] 2^{n / 2}+I_{l} J_{l}$
$=I_{h} J_{h} 2^{n}+\left[\left(I_{h} J_{l}-I_{l} J_{l}-I_{h} J_{h}+I_{l} J_{h}\right)+I_{h} J_{h}+I_{l} J_{l}\right] 2^{n / 2}+I_{l} J_{l}$
$=I_{h} J_{h} 2^{n}+\left(I_{h} J_{l}+I_{l} J_{h}\right) 2^{n / 2}+I_{l} J_{l}$
- So, $T(n)=3 T(n / 2)+n$, which implies $T(n)$ is $O\left(n^{\log _{2} 3}\right)$, by the Master Theorem.
- Thus, $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$.
© 2015 Goodrich and Tamassia Divide-and-Conquer 20

Divide-and-Conquer Solution

- Given a set, S , of n points in the plane, there is a simple divide-and-conquer algorithm for constructing the maxima set of points in S.
- If $\mathrm{n} \leq 1$, the maxima set is just S itself.
- Otherwise, let p be the median point in S according to a lexicographic ordering of the points in S , that is, where we order based primarily on x coordinates and then by y-coordinates if there are ties.
- Next, we recursively solve the maxima-set problem for the set of points on the left of this line and also for the points on the right.
- Given these solutions, the maxima set of points on the right are also maxima points for S .
- But some of the maxima points for the left set might be dominated by a point from the right, namely the point, q, that is leftmost
- So then we do a scan of the left set of maxima, removing any points that are dominated by q , until reaching the point where q 's dominance extends.
- The union of remaining set of maxima from the left and the maxima set from the right is the set of maxima for S.
© 2015 Goodrich and Tamassia Divide-and-Conquer

Pseudo-code

Example for the Combine Step

© 2015 Goodrich and Tamassia
Divide-and-Conquer

Algorithm MaximaSet(S)
Input: A set, S, of n points in the plane
Output: The set, M, of maxima points in S
if $n \leq 1$ then
return S
Let p be the median point in S, by lexicographic (x, y)-coordinates
Let L be the set of points lexicographically less than p in S
Let G be the set of points lexicographically greater than or equal to p in S
$M_{1} \leftarrow \operatorname{MaximaSet}(L)$
$M_{2} \leftarrow \operatorname{MaximaSet}(G)$
Let q be the lexicographically smallest point in M_{2} for each point, r, in M_{1} do
if $x(r) \leq x(q)$ and $y(r) \leq y(q)$ then
Remove r from M_{1}
return $M_{1} \cup M_{2}$
© 2015 Goodrich and Tamassia \quad Divide-and-Conque

A Little Implementation Detail

- Before we analyze the divide-and-conquer maxima-set algorithm, there is a little implementation detail that we need to work out.
- Namely, there is the issue of how to efficiently find the point, p, that is the median point in a lexicographical ordering of the points in S according to their (x, y)-coordinates.
- There are two immediate possibilities:
- One choice is to use a linear-time median-finding algorithm, such as that given in Section 9.2. This achieves a good asymptotic running time, but adds some implementation complexity.
- Another choice is to sort the points in S lexicographically by their (x, y)-coordinates as a preprocessing step, prior to calling the MaxmaSet algorithm on S. Given this preprocessing step, the median point is simply the point in the middle of the list.

Analysis

- In either case, the rest of the non-recursive steps can be performed in $O(n)$ time, so this implies that, ignoring floor and ceiling functions (as allowed by the analysis of Exercise $\mathrm{C}-11.5$), the running time for the divide-and-conquer maxima-set algorithm can be specified as follows (where b is a constant):

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n & \text { if } n \geq 2
\end{array}\right.
$$

- Thus, according to the Master Theorem, this algorithm runs in $O(n \log n)$ time.

