Divide-and-Conquer

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Divide-and-Conquer

© 2015 Goodrich and Tamassia Divide-and-Conquer 1

3/13/2017 3:56 PM

Application: Maxima Sets
d

“@® We can visualize the various trade-offs for optimizing two-
dimensional data, such as points representing hotels according to
their pool size and restaurant quality, by plotting each as a two-
dimensional point, (x, y), where x is the pool size and y is the
restaurant quality score.

We say that such a point is a maximum point in a set if there is no

‘ other point, (x’, y’), in that set such that x < x’and y < y’.

@ The maximum points are the best potential choices based on these
two dimensions and finding all of them is the maxima set problem.

A

We can efficiently find all ¢

the maxima points aualty i

by divide-and-conquer. / o o

Here the set is {A,H,I,G,D}. 3

Pool size

© 2015 Goodrich and Tamassia Divide-and-Conquer 2

'Divide-and-Conquer

| @ Divide-and conquer is a
general algorithm design
paradigm:

= Divide: divide the input data S in
two or more disjoint subsets S,

= Conquer: solve the subproblems
recursively

= Combine: combine the solutions
for §,, S,, ..., into a solution for §
@ The base case for the
recursion are subproblems of
constant size

@ Analysis can be done using

recurrence equations
© 2015 Goodrich and Tamassia Divide-and-Conquer 3

Merge-Sort Review

@® Merge-sort on an input

sequence § WIFh n Algorithm mergeSort(S)
elements consists of Input sequence S with n
three steps: elements
= Divide: partition S into Output sequence S sorted
two sequences S, and S, according to C
of about »/2 elements if S.size() > 1
each s
. (S, S,) < partition(S, n/2)
= Conquer: recursively sort Tl
s, and §, mergeSort(S))
= Combine: merge , and mergeSort(S,)
S, into a unique sorted S« merge(S,, S,)
sequence
© 2015 Goodrich and Tamassia Divide-and-Conquer 4

‘Recurrence Equation Analysis

I # The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly linked list, takes at most bn steps, for some constant b.

Likewise, the basis case (n < 2) will take at » most steps.
Therefore, if we let T(n) denote the running time of merge-sort:

b ifn<2

T(n)= .
2T(n/2)+bn ifn>2

We can therefore analyze the running time of merge-sort by
finding a closed form solution to the above equation.
= That is, a solution that has 7(») only on the left-hand side.

© 2015 Goodrich and Tamassia Divide-and-Conquer 5

Iterative Substitution Q@

| ® In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can
find a pattern: T(n)=2T(n/2)+bn

=2(2T(n/2%))+b(n/2))+bn
=2’T(n/2%)+2bn
=2’T(n/2*)+3bn
2°T(n/2%) +4bn

=2'T(n/2")+ibn
Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n.

So, T(n)=bn+bnlogn
@ Thus, T(n) is O(n log n).
© 2015 Goodrich and Tamassia Divide-and-Conquer 6

Divide-and-Conquer

The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a
pattern:
b ifn<2
T(n)= .
2T(n/2)+bn ifn>2
depth T's size time
0 1 n bn

1 2 n/2 ()

() bn
i - ﬁ 2% .

Total time = bn + bn log n
(last level plus all previous levels)

© 2015 Goodrich and Tamassia Divide-and-Conquer 7

3/13/2017 3:56 PM

Guess-and-Test Method

) # In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

b if n<2
T(n)= .
2T(n/2)+bnlogn if n>2

@ Guess: T(n) <cnlogn.
T(n)=2T(n/2)+bnlogn
=2(c(n/2)log(n/2))+bnlogn
=cn(logn —log2)+bnlogn
=cnlogn—cn+bnlogn

\Wrong: we cannot make this last line be less than cn log n

© 2015 Goodrich and Tamassia Divide-and-Conquer 8

Guess-and-Test Method, (cont.)

I # Recall the recurrence equation:
b ifn<2
T(m)= .
2T(n/2)+bnlogn if n>2
Guess #2: T(n) < cn log? n.
T(n)=2T(n/2)+bnlogn
=2(c(n/2)log’(n/2))+bnlogn
=cn(logn—log2)* +bnlogn
=cnlog® n—2cnlogn+cn+bnlogn
<cnlog’n
= ifc>Db. ¢
So, T(n) is O(n log? n).
In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

© 2015 Goodrich and Tamassia Divide-and-Conquer 9

Master Method

| & Many divide-and-conquer recurrence equations have
the form:

ot e ifn<d
D =VaTniby+ f(n) ifn>d

@ The Master Theorem:
1. if f(n)is O(n"%“*), then T(n) is O(n"***)
2. if f(n)is O(n'"*“ log* n), then T(n) is O(n'*“ log"*' n)
3. if f(n)is Q(n"®**), then T(n) is O(£ (n)),
provided af (n/b)< df (n) forsomed <1.

© 2015 Goodrich and Tamassia Divide-and-Conquer 10

Master Method, Example 1

| @ The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"*“*), then T'(n)is O(n"*")
2.if f(n)is @(n"*“ log" n), then T'(n) is O(n"*“ log"™" n)
3.0f f(n) is Q(n"**), then T'(n) is O(f (1)),
provided af (n/b)< & (n) forsome s <1.

@ E le:
O () =4T(n/2)+n

Solution: log,a=2, so case 1 says T(n) is O(n?).

© 2015 Goodrich and Tamassia Divide-and-Conquer 11

Master Method, Example 2

The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"*“*), then T(n) is O(n" ")
2.if f(n)is @1 log" n), then T'(n) is @(1n"** log"*" n)
3.0 f(n)is Q(n°%), then T(n) is O(f (n)),
provided af (n/b)<df(n) forsomed <1.
Example:
T(n)=2T(n/2)+nlogn

Solution: log,a=1, so case 2 says T(n) is O(n logZ n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 12

Divide-and-Conquer

‘Master Method, Example 3 |

| @ The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"* "), then T'(n) is O(n" =)
2.if f(n)is O(n"*“ log" n), then T(n) is O(n"*“ log"" n)
3. if f(n) is Q(n"***), then T(n) is O(f (n)),
provided af(n/b) < & (n) forsome s <1.
@ Example:
T(n)=T(n/3)+nlogn

Solution: logya=0, so case 3 says T(n) is O(n logn).

© 2015 Goodrich and Tamassia Divide-and-Conquer 13

3/13/2017 3:56 PM

‘Master Method, Example 4

The form: T(n):{ c n<d
al(n/b)+ f(n) ifn>d

@ The Master Theorem:

1. if f(n)is O(n"*“), then T'(n) is O(n")

2.if f(n)is O(n"* log" n), then T'(n) is @(n"*** log"*' n)

3.0f f(n)is Q(n%), then T(n) is O(f (n)),

provided af (n/b)<df(n) forsomed <1.
@ Example:
T(n)=8T(n/2)+n’

Solution: log,a=3, so case 1 says T(n) is O(n3).

© 2015 Goodrich and Tamassia Divide-and-Conquer 14

‘Master Method, Example 5 '

| @ The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"*“*), then T'(n)is O(n" =)
2.if f(n)is O(n"*“ log" n), then T'(n) is O(n"*“ log"™" n)
3. if f(n) is Q(n"***), then T(n) is O(f (n)),
provided af (n/b)< & (n) forsome s <1.
Example:
T(n) =9T(n/3)+n’

Solution: log,a=2, so case 3 says T(n) is O(n3).

© 2015 Goodrich and Tamassia Divide-and-Conquer 15

‘Master Method, Example 6

| @ The form: T(n):{ ¢ ifn<d

al(n/b)+ f(n) ifn>d

@ The Master Theorem:

1. if f(n)is O(n"*“*), then T'(n) is O(n"**)

2.if f(n)is @1 log" n), then T'(n) is @(1n"** log"*" n)

3. 0f f(n)is Q(n%), then T(n) is O(f (n)),

provided af (n/b)<df(n) forsomed <1.
Example:
T(n)=T(n/2)+1 (binary search)

Solution: logya=0, so case 2 says T(n) is O(log n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 16

‘Master Method, Example 7 |

| @ The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"*“*), then T'(n)is O(n"*")
2.if f(n)is @(n"*“ log" n), then T'(n) is O(n"*“ log"™" n)
3. if f(n) is Q(n****), then T(n) is O(f (n)),
provided af (n/b)< & (n) forsome s <1.
Example:

T(n)=2T(n/2)+logn (heap construction)

Solution: logya=1, so case 1 says T(n) is O(n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 17

Theorem

‘ # Using iterative substitution, let us see if we can find a pattern:

Sketch of Proof of the Master

T(n)=aT (n/b)+ f(n)
=a(al(n/b*)+ f(n/b))+bn
=a’T(n/b*)+af (n/b)+ f(n)
=a’T(n/b)+a f(n/b*)+af (n/b)+ f(n)

=a""T(1)+ “nlﬁ);"f'(n/b')
i=0

log, n)-1
= n‘“""”T(l)+‘ gz»a’_/'(n/b’)

=0
@ We then distinguish the three cases as
= The first term is dominant
= Each part of the summation is equally dominant
= The summation is a geometric series

© 2015 Goodrich and Tamassia Divide-and-Conquer 18

Divide-and-Conquer

Integer Multiplication

@ Algorithm: Multiply two n-bit integers I and J.
= Divide step: Split I and J into high-order and low-order bits
I=1,2""+1,
J=J,2"%+J,
= We can then define I*] by multiplying the parts and adding:
I*¥J=(1,2"* +1)*(J,2"* +J))
=1,J,2"+1,J,2"° +1.J,2"* +1,J,
= S0, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).

= But that is no better than the algorithm we learned in grade
school.

© 2015 Goodrich and Tamassia Divide-and-Conquer 19

3/13/2017 3:56 PM

An Improved Integer
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
= Divide step: Split I and J into high-order and low-order bits
I=1,2"+1,
J=J,2"%+J,
= Observe that there is a different way to multiply parts:
I*J=1,J,2"+[(I, - 1)(J, = J,)+ 1, J, "'11‘]1]2’1/Z +1,J,
=1,J,2"+[(I,J, - 1J, 1,0, +1LJ)+ 1,J, +1J,12"* +I.J,
=1,J,2" +(I,J,+1,J,)2"* +1,J,
= S0, T(n) = 3T(n/2) + n, which implies T(n) is O(n'*,3), by
the Master Theorem.

« Thus, T(n) is O(nt585),
© 2015 Goodrich and Tamassia Divide-and-Conquer 20

Solving the Maxima Set Problem

| @ Let us now return to the problem of finding a
maxima set for a set, S, of n points in the plane.

This problem is motivated from multi-objective
optimization, where we are interested in optimizing
choices that depend on multiple variables.

For instance, in the introduction we used the example
of someone wishing to optimize hotels based on the
two variables of pool size and restaurant quality.

A point is a maximum point in S if there is no other
point, (x’, y’), in Ssuch thatx < x"andy <y’

© 2015 Goodrich and Tamassia Divide-and-Conquer 21

Divide-and-Conquer Solution

® Given a set, S, of n points in the plane, there is a simple divide-and-conquer
algorithm for constructing the maxima set of points in S.

® If n <1, the maxima set is just S itself.

Otherwise, let p be the median point in S according to a lexicographic
ordering of the points in S, that is, where we order based primarily on x-
coordinates and then by y-coordinates if there are ties.

® Next, we recursively solve the maxima-set problem for the set of points on
the left of this line and also for the points on the right.

Given these solutions, the maxima set of points on the right are also
maxima points for S.

But some of the maxima points for the left set might be dominated by a
point from the right, namely the point, q, that is leftmost.

#® So then we do a scan of the left set of maxima, removing any points that
are dominated by g, until reaching the point where g’'s dominance extends.

#® The union of remaining set of maxima from the left and the maxima set
from the right is the set of maxima for S.

© 2015 Goodrich and Tamassia Divide-and-Conquer 22

Example for the Combine Step

Dominance point
from the right

© 2015 Goodrich and Tamassia Divide-and-Conquer 23

Pseudo-code

Algorithm MaximaSet(5):

Input: A set, S, of n points in the plane
Output: The set, M, of maxima points in S
if n < 1 then

return S
Let p be the median point in S, by lexicographic (i, y)-coordinates
Let L be the set of points lexicographically less than p in S
Let G be the set of points lexicographically greater than or equal to p in S
M < MaximaSet(L)
M; + MaximaSet(G)
Let g be the lexicographically smallest point in M
for each point, 7, in M; do

if z2(r) < z(q) and y(r) < y(q) then

Remove r from My

return M U My

© 2015 Goodrich and Tamassia Divide-and-Conquer 24

Divide-and-Conquer

3/13/2017 3:56 PM

L4

&

© 2015 Goodrich and Tamassia

‘A Little Implementation Detail

Before we analyze the divide-and-conquer maxima-set algorithm,
there is a little implementation detail that we need to work out.
Namely, there is the issue of how to efficiently find the point, p,
that is the median point in a lexicographical ordering of the points
in S according to their (x, y)-coordinates.

There are two immediate possibilities:

One choice is to use a linear-time median-finding algorithm, such
as that given in Section 9.2. This achieves a good asymptotic
running time, but adds some implementation complexity.
Another choice is to sort the points in S lexicographically by their
(x, y)-coordinates as a preprocessing step, prior to calling the
MaxmaSet algorithm on S. Given this preprocessing step, the
median point is simply the point in the middle of the list.

Divide-and-Conquer 25

‘Analysis

| @ In either case, the rest of the non-recursive steps can

be performed in O(n) time, so this implies that,
ignoring floor and ceiling functions (as allowed by the
analysis of Exercise C-11.5), the running time for the
divide-and-conquer maxima-set algorithm can be
specified as follows (where b is a constant):

b ifn<2
2T(n/2)+bn ifn>2

@ Thus, according to the Master Theorem, this algorithm
runs in O(n log n) time.

I'(n)=

© 2015 Goodrich and Tamassia Divide-and-Conquer 26

