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Application: Maxima Sets
d

“@® We can visualize the various trade-offs for optimizing two-
dimensional data, such as points representing hotels according to
their pool size and restaurant quality, by plotting each as a two-
dimensional point, (x, y), where x is the pool size and y is the
restaurant quality score.

# We say that such a point is a maximum point in a set if there is no

‘ other point, (x’, y’), in that set such that x < x’and y < y’.

@ The maximum points are the best potential choices based on these
two dimensions and finding all of them is the maxima set problem.

A

We can efficiently find all ¢

the maxima points aualty i

by divide-and-conquer. / o o

Here the set is {A,H,I,G,D}. 3

Pool size
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'Divide-and-Conquer

| @ Divide-and conquer is a
general algorithm design
paradigm:

= Divide: divide the input data S in
two or more disjoint subsets S,

= Conquer: solve the subproblems
recursively

= Combine: combine the solutions
for §,, S,, ..., into a solution for §
@ The base case for the
recursion are subproblems of
constant size

@ Analysis can be done using

recurrence equations
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Merge-Sort Review

@® Merge-sort on an input

sequence § WIFh n Algorithm mergeSort(S)
elements consists of Input sequence S with n
three steps: elements
= Divide: partition S into Output sequence S sorted
two sequences S, and S, according to C
of about »/2 elements if S.size() > 1
each s
. (S, S,) < partition(S, n/2)
= Conquer: recursively sort Tl
s, and §, mergeSort(S))
= Combine: merge , and mergeSort(S,)
S, into a unique sorted S« merge(S,, S,)
sequence
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‘Recurrence Equation Analysis

I # The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly linked list, takes at most bn steps, for some constant b.

# Likewise, the basis case (n < 2) will take at » most steps.
# Therefore, if we let T(n) denote the running time of merge-sort:

b ifn<2

T(n)= .
2T(n/2)+bn ifn>2

# We can therefore analyze the running time of merge-sort by
finding a closed form solution to the above equation.
= That is, a solution that has 7(») only on the left-hand side.
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Iterative Substitution Q@

| ® In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can
find a pattern: T(n)=2T(n/2)+bn

=2(2T(n/2%))+b(n/2))+bn
=2’T(n/2%)+2bn
=2’T(n/2*)+3bn
2°T(n/2%) +4bn

=2'T(n/2")+ibn
# Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n.

# So, T(n)=bn+bnlogn
@ Thus, T(n) is O(n log n).
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The Recursion Tree

# Draw the recursion tree for the recurrence relation and look for a
pattern:
b ifn<2
T(n)= .
2T(n/2)+bn ifn>2
depth T's size time
0 1 n bn

1 2 n/2 ( )

( ) bn
i - ﬁ 2% .

Total time = bn + bn log n
(last level plus all previous levels)
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Guess-and-Test Method

) # In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

b if n<2
T(n)= .
2T(n/2)+bnlogn if n>2

@ Guess: T(n) <cnlogn.
T(n)=2T(n/2)+bnlogn
=2(c(n/2)log(n/2))+bnlogn
=cn(logn —log2)+bnlogn
=cnlogn—cn+bnlogn

# \Wrong: we cannot make this last line be less than cn log n
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Guess-and-Test Method, (cont.)

I # Recall the recurrence equation:
b ifn<2
T(m)= .
2T(n/2)+bnlogn if n>2
# Guess #2: T(n) < cn log? n.
T(n)=2T(n/2)+bnlogn
=2(c(n/2)log’(n/2))+bnlogn
=cn(logn—log2)* +bnlogn
=cnlog® n—2cnlogn+cn+bnlogn
<cnlog’n
= ifc>Db. ¢
# So, T(n) is O(n log? n).
# In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.
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Master Method

| & Many divide-and-conquer recurrence equations have
the form:

ot e ifn<d
D =VaTniby+ f(n) ifn>d

@ The Master Theorem:
1. if f(n)is O(n"%“*), then T(n) is O(n"***)
2. if f(n)is O(n'"*“ log* n), then T(n) is O(n'*“ log"*' n)
3. if f(n)is Q(n"®**), then T(n) is O( £ (n)),
provided af (n/b)< df (n) forsomed <1.
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Master Method, Example 1

| @ The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"*“*), then T'(n)is O(n"*")
2.if f(n)is @(n"*“ log" n), then T'(n) is O(n"*“ log"™" n)
3.0f f(n) is Q(n"**), then T'(n) is O(f (1)),
provided af (n/b)< & (n) forsome s <1.

@ E le:
O () =4T(n/2)+n

Solution: log,a=2, so case 1 says T(n) is O(n?).

© 2015 Goodrich and Tamassia Divide-and-Conquer 11

Master Method, Example 2

# The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"*“*), then T(n) is O(n" ")
2.if f(n)is @1 log" n), then T'(n) is @(1n"** log"*" n)
3.0 f(n)is Q(n°% ), then T(n) is O(f (n)),
provided af (n/b)<df(n) forsomed <1.
# Example:
T(n)=2T(n/2)+nlogn

Solution: log,a=1, so case 2 says T(n) is O(n logZ n).
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‘Master Method, Example 3 |

| @ The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"* "), then T'(n) is O(n" =)
2.if f(n)is O(n"*“ log" n), then T(n) is O(n"*“ log"" n)
3. if f(n) is Q(n"***), then T(n) is O(f (n)),
provided af(n/b) < & (n) forsome s <1.
@ Example:
T(n)=T(n/3)+nlogn

Solution: logya=0, so case 3 says T(n) is O(n logn).
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‘Master Method, Example 4

# The form: T(n):{ c n<d
al(n/b)+ f(n) ifn>d

@ The Master Theorem:

1. if f(n)is O(n"*“), then T'(n) is O(n" )

2.if f(n)is O(n"* log" n), then T'(n) is @(n"*** log"*' n)

3.0f f(n)is Q(n% ), then T(n) is O(f (n)),

provided af (n/b)<df(n) forsomed <1.
@ Example:
T(n)=8T(n/2)+n’

Solution: log,a=3, so case 1 says T(n) is O(n3).
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‘Master Method, Example 5 '

| @ The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"*“*), then T'(n)is O(n" =)
2.if f(n)is O(n"*“ log" n), then T'(n) is O(n"*“ log"™" n)
3. if f(n) is Q(n"***), then T(n) is O(f (n)),
provided af (n/b)< & (n) forsome s <1.
# Example:
T(n) =9T(n/3)+n’

Solution: log,a=2, so case 3 says T(n) is O(n3).
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‘Master Method, Example 6

| @ The form: T(n):{ ¢ ifn<d

al(n/b)+ f(n) ifn>d

@ The Master Theorem:

1. if f(n)is O(n"*“*), then T'(n) is O(n"**)

2.if f(n)is @1 log" n), then T'(n) is @(1n"** log"*" n)

3. 0f f(n)is Q(n% ), then T(n) is O(f (n)),

provided af (n/b)<df(n) forsomed <1.
# Example:
T(n)=T(n/2)+1 (binary search)

Solution: logya=0, so case 2 says T(n) is O(log n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 16

‘Master Method, Example 7 |

| @ The form: T(n):{ ¢ n<d
al(n/b)+ f(n) ifn>d
@ The Master Theorem:
1. if f(n)is O(n"*“*), then T'(n)is O(n"*")
2.if f(n)is @(n"*“ log" n), then T'(n) is O(n"*“ log"™" n)
3. if f(n) is Q(n****), then T(n) is O(f (n)),
provided af (n/b)< & (n) forsome s <1.
# Example:

T(n)=2T(n/2)+logn (heap construction)

Solution: logya=1, so case 1 says T(n) is O(n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 17

Theorem

‘ # Using iterative substitution, let us see if we can find a pattern:

Sketch of Proof of the Master

T(n)=aT (n/b)+ f(n)
=a(al(n/b*)+ f(n/b))+bn
=a’T(n/b*)+af (n/b)+ f(n)
=a’T(n/b)+a f(n/b*)+af (n/b)+ f(n)

=a""T(1)+ “nlﬁ);"f'(n/b')
i=0

log, n)-1
= n‘“""”T(l)+‘ gz»a’_/'(n/b’)

=0
@ We then distinguish the three cases as
= The first term is dominant
= Each part of the summation is equally dominant
= The summation is a geometric series
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Integer Multiplication

@ Algorithm: Multiply two n-bit integers I and J.
= Divide step: Split I and J into high-order and low-order bits
I=1,2""+1,
J=J,2"%+J,
= We can then define I*] by multiplying the parts and adding:
I*¥J=(1,2"* +1)*(J,2"* +J))
=1,J,2"+1,J,2"° +1.J,2"* +1,J,
= S0, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).

= But that is no better than the algorithm we learned in grade
school.
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An Improved Integer
Multiplication Algorithm

# Algorithm: Multiply two n-bit integers I and J.
= Divide step: Split I and J into high-order and low-order bits
I=1,2"+1,
J=J,2"%+J,
= Observe that there is a different way to multiply parts:
I*J=1,J,2"+[(I, - 1)(J, = J,)+ 1, J, "'11‘]1]2’1/Z +1,J,
=1,J,2"+[(I,J, - 1J, 1,0, +1LJ )+ 1,J, +1J,12"* +I.J,
=1,J,2" +(I,J,+1,J,)2"* +1,J,
= S0, T(n) = 3T(n/2) + n, which implies T(n) is O(n'*,3), by
the Master Theorem.

« Thus, T(n) is O(nt585),
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Solving the Maxima Set Problem

| @ Let us now return to the problem of finding a
maxima set for a set, S, of n points in the plane.

# This problem is motivated from multi-objective
optimization, where we are interested in optimizing
choices that depend on multiple variables.

# For instance, in the introduction we used the example
of someone wishing to optimize hotels based on the
two variables of pool size and restaurant quality.

# A point is a maximum point in S if there is no other
point, (x’, y’), in Ssuch thatx < x"andy <y’
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Divide-and-Conquer Solution

® Given a set, S, of n points in the plane, there is a simple divide-and-conquer
algorithm for constructing the maxima set of points in S.

® If n <1, the maxima set is just S itself.

# Otherwise, let p be the median point in S according to a lexicographic
ordering of the points in S, that is, where we order based primarily on x-
coordinates and then by y-coordinates if there are ties.

® Next, we recursively solve the maxima-set problem for the set of points on
the left of this line and also for the points on the right.

# Given these solutions, the maxima set of points on the right are also
maxima points for S.

# But some of the maxima points for the left set might be dominated by a
point from the right, namely the point, q, that is leftmost.

#® So then we do a scan of the left set of maxima, removing any points that
are dominated by g, until reaching the point where g’'s dominance extends.

#® The union of remaining set of maxima from the left and the maxima set
from the right is the set of maxima for S.
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Example for the Combine Step

Dominance point
from the right
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Pseudo-code

Algorithm MaximaSet(5):

Input: A set, S, of n points in the plane
Output: The set, M, of maxima points in S
if n < 1 then

return S
Let p be the median point in S, by lexicographic (i, y)-coordinates
Let L be the set of points lexicographically less than p in S
Let G be the set of points lexicographically greater than or equal to p in S
M < MaximaSet(L)
M; + MaximaSet(G)
Let g be the lexicographically smallest point in M
for each point, 7, in M; do

if z2(r) < z(q) and y(r) < y(q) then

Remove r from My

return M U My
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‘A Little Implementation Detail

Before we analyze the divide-and-conquer maxima-set algorithm,
there is a little implementation detail that we need to work out.
Namely, there is the issue of how to efficiently find the point, p,
that is the median point in a lexicographical ordering of the points
in S according to their (x, y)-coordinates.

There are two immediate possibilities:

One choice is to use a linear-time median-finding algorithm, such
as that given in Section 9.2. This achieves a good asymptotic
running time, but adds some implementation complexity.
Another choice is to sort the points in S lexicographically by their
(x, y)-coordinates as a preprocessing step, prior to calling the
MaxmaSet algorithm on S. Given this preprocessing step, the
median point is simply the point in the middle of the list.
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‘Analysis

| @ In either case, the rest of the non-recursive steps can

be performed in O(n) time, so this implies that,
ignoring floor and ceiling functions (as allowed by the
analysis of Exercise C-11.5), the running time for the
divide-and-conquer maxima-set algorithm can be
specified as follows (where b is a constant):

b ifn<2
2T(n/2)+bn ifn>2

@ Thus, according to the Master Theorem, this algorithm
runs in O(n log n) time.

I'(n)=
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